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LETTER TO THE EDITOR 

Simple excitations in the nested Bethe-ansatz model 

Junji Suzuki 
Instittue of Physics, College of Arts and Sciences, University of Tokyo, Komaba 3-8-1, 
Meguro-ku, Tokyo, Japan 

Received 31 August 1988, in final form 12 October 1988 

Abstract. The scaling dimension of the operators in the nested Bethe ansatz model are 
studied. They explicitly show the structure of the underlying Lie algebras; they can be 
written in terms of the Cartan matrix. We infer that they are the natural extension of those 
of SU(2), or equivalently of the Coulomb gas. 

Recently conformal invariance has become one of the most dominant concepts in the 
study of critical phenomena. Among the remarkable outcomes of conformal invariance 
theory, the formulae derived by Cardy [l], Blote et a1 [2] and Affleck [3] turn out to 
be extremely fruitful in statistical mechanics. They showed that the central charge and 
the operator dimensions can be derived by evaluating finite-size corrections. On the 
other hand, de Vega and Woynarovich [4] invented an efficient method of evaluating 
the finite correction to the free energy in the case that the model can be exactly solved 
by the Bethe ansatz. Their method was refined by Woynarovich and Eckle [5] so as 
to enable one to evaluate higher correction terms. Several models were analysed by 
this method, e.g. the X X Z  chain, 6-vertex [6], the higher spin chain [7], 8-vertex [8], 
Potts, Ashkin-Teller [9], O( n )  [lo], the Hubbard model [ 113,  etc. 

Based on these works, we study in this letter the scaling dimensions of some simple 
excitations in the nested Bethe-ansatz ( NBA) model [ 121 having the rational S matrix. 
It is known that a large number of theoretical models have rational S matrices and, 
further, as shown by Ogievetsky and Wiegmann [13], the existence of the rational S 
matrix necessarily leads to the NBA, so that our approach applies to a great many 
important models such as the S U ( N )  magnetic chain [14], O(2k) Gross-Neveu model 
[15], etc. The resulting expressions for the dimensions of scaling and spin operators 
show the structure of the underlying Lie algebras explicitly, and are seen to be natural 
extensions to those of SU(2) or, equivalently, 2~ Coulomb gas. Thus the outcome of 
the present work may hopefully shed some light on the further study of the operator 
content of the N B A  model. 

To work with the N B A  model we generalise the methods of [4] and [5] to multicom- 
ponent systems. The N B A  model having the rational S matrix is characterised by 

In the above equation, N is the linear size of the system, nI is the number of 'particles' 
having colour 1, r is the rank of the underlying Lie algebra, 4(z, a)= 
i log[(z + a ) / ( z  - a)] and wk = (U,  ak ) ,  W/k = ( a I ,  ak) where w is the highest weight and 
aj is the simple root. 
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The free energy for the finite system is given by 

where 8 corresponds to the spectral parameter. 
In the thermodynamic limit ( N  + CO), the root densities aC’(A)  (here ‘root’ means 

the solution to the NBA equation; be careful not to confuse with the ‘root’ used in the 
Lie algebra) are given by the solutions to the following integral equations: 

where Klk(h) = +’(A, Wlk)/2T. 
The solution can be written in terms of the Green matrix & ( A )  as 

fl$’(A)=C I d p  & ( A  - p ) + ’ ( P ,  Wk)/2r- (4) 
k 

The Fourier-transformed form of R-’  plays an important part in the following; its 
explicit form is 

(k-’)lk(X) = alk+sgn[(al, a k ) ]  exp(-l(al, ak)xl) ( 5 )  

with sgn(0)=0. Since aj is the simple root, k-’ at x=O is nothing but the Cartan 
matrix % for the underlying Lie algebra: 

P ( 0 )  = %. (6)  

The free energy can be written in terms of a$(A) as 

As usual, we define the root density functions for the large but finite system as 

ug)(A) = dz‘,(A)/dA I =  1,.  . . , r (8) 

where z‘, is defined as a function of A through 

For nb, the number of particles of colour 1 in the excited state we introduce the 
maximum roots A, by solving 

(10) z&(Al)  = nf.-  1/2N 1 = 1, . . . , r. 

Integration of (8) with the help of (4), ( 6 ) ,  (9) and (10) yields 
rco 

where nl = nh- n i  with n: being the number of particles of colour 1 in the ground state. 
Since we can, in principle, assign any integer to nr, we can choose the RI arbitrarily, 
but in this letter we treat the simplest case, A, = A2 = . , . = A, = A to avoid mathematical 
complexities. As shown later, all excitations are massless in this case. 
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where S z  is defined by 

Let us define X ;  and F? respectively through 

X ; ( A ) = O ( * A ) C ~ ) ( A  +A)  

F; ' (A)  = o(*A)&)(A + A )  

where O(x) denotes the conventional step function. Then (12) can be rewritten into 
a Wiener-Hopf type integral equation. Indeed in the case A - A ,  it can be written in 
the Fourier-transformed form as 

E ( x ) ~ + ( x ) + ~ - ( x ) - ( * + ( x ) + * - ( x ) )  = I?(x)E(x)u(x) (17) 

where the j th  component of u(x) is given by 

1 ix 
(u(x))j  =-+ 

2 N 12 N&,)(A) ' 

In order to solve (17), we first verify the following properties of the k ' ( x ) :  

[E-yx) ,  i - ' ( y ) ]  = 0 (19a) 

E - y x  = C O )  = E. (19b) 

They ensure that there exists an x-independent orthogonal matrix 9 which diagonalises 
E-'(x), i.e. 

d - y x )  = 9 T ( X ) 9 .  (20) 

T(x)  is a diagonal matrix, the components of which are eigenvalues T ~ ( x )  ( j  = 1, . . . , r )  
of E-'(x). Then, following the standard method [16], we represent I?-'(x) as the 
product of the matrices E+(x)  and E-(x) which are analytic in the upper and the 
lower half planes respectively as 

P ( x )  = E+(x)%(x) (21) 

under the restrictions 

E-(x) = (E , (X) )+  

and 

lim E+(x)  = E. 
1x1" 

In order to obtain the explicit form for E+, we decompose T~ as 

T~(x )  = T;(x)T,~(x) (23) 
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where T;(x) ( T ~ ( x ) )  is an analytic function in the upper (lower) half plane, and their 
forms are given by 

(e, r ix/2) 
r( 1 T i x / h  - 8 , / 2 ~ ) r (  1 T ix/41r -k e,/21r) 

In the above 0, denotes the properly normalised Coxeter exponents for the underlying 
Lie algebras (see table 1). Asymptotically they behave as 

7jyx)- 1*g: ' /x+ggx2 as 1x1 + 00 

with 

g{ = 2iv(8,/1r-$- ej2/h2) 
g'; = (g02/2. (25) 

E* = 9 A * ( x ) ' 9  (26) 

From equations (20)-(22) we obtain the explicit form for % as 

where (A,(x))~,, = S i , j ~ f ( ~ ) .  One can easily see that both (22a) and (226) are satisfied. 
With the matrix E+ obtained above, the solution to (17), z+, is written in the form 

g+(x )  = 4 x 1  + E+(x)(Q+(x) + P(x)) .  (27) 

In the above, Q+(x) denotes 

Table 1. List of quantities K ,  mJ, 8, for various Lie algebras. See the text for definition. 

Lie 
algebra K " J  (8,) ( j =  1 , .  . . ,n )  

JT ( j = 1  ,..., n )  
n + l  

(2j - 1 ) ~  
2(n - 1) 

( j  = 1, .  . . , n - 1) 

77/12,  117/12, 

713,  27/31 

57/18,  77/18, 

137/18, 177/18)  

77/30,  11 7/30,  

m 2 = 2 m ,  cos 7 / 1 8  m,=$m, /s in(T/ l8)  
m 5 = 4 m ,  c o s x / 1 8 s i n 2 7 / 9  E ,  

197/30, 237/30, 
137/30, 177/30, 

m ,  = 2.0361 . . , 
m 2 = 2 m ,  cos 7 / 3 0  m3= m, sin(~/ lO)/s in(n- /30)  

m, =$m,/sin(.rr/l5) 

E* 
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where the j t h  component of w is mj exp(-KA) ( K  and mj are presented in table 1)  
and P stands for 

P ( x )  = -u(x)+i9%Bs/12N2 (29) 

where ( %)i , j  = 6i , jg i ,  ( s ) ~  = l /uy)(A),’  
The magnitude of &)(A) can be fixed by ( 1  l ) ,  or equivalently by 

The set of equations (30a) and (30b) leads to a lengthy vector equation which &)(A) 
must satisfy. Combining it with (13), we have 

After imposing the proper normalisation on the free energy [ 121, we employ the 
formulae derived in [1]-[3] and obtain a universal expression for the dimensions of 
scaling operators as 

x , , ~  = ‘n(en. (32) 

c = r  (33) 

The central charge is also 

which shows that the degree of freedom is equal to the rank of the Lie algebra; in 
other words all excitations are massless [12]. If there exist ‘hole’ excitations, the above 
expression must be slightly modified to 

X,,m = ‘n%n + ‘m%-’m. (34) 

,Sn,m = n m. (35) 

Similarly we also have the spin dimensions as 

We may assert that the n correspond to the ‘spin wave’ excitation and the m correspond 
to the ‘vortex’ excitation. Thus we can say that expressions (33) and (34) are natural 
extensions to those of SU(2) (or the Coulomb gas) [17]. Since the ZD Coloumb gas 
is equivalent to the critical SU(2) model, one may argue that the counterpart to the 
NBA model is, say, a multicomponent 2~ Coulomb gas. 

The details of the present letter will be published elsewhere. 

I am grateful to Professor T Izuyama, Dr H Namaizawa and Mr A Kuniba for comments 
and advice. 

Note ndded. After submission of this letter, I received a preprint from Professor H J de Vega [18] in which 
he obtained similar results in the case of the q(24  - 1)-vertex model, which possesses the trigonometric S 
matrix and Aq-, symmetry. I thank Professor de Vega for sending that preprint prior to publication. 
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